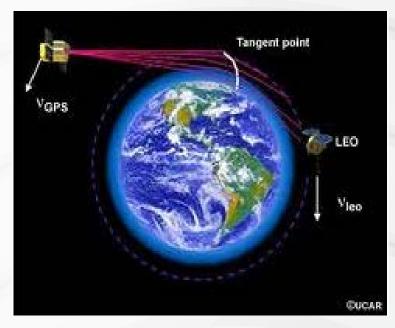
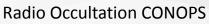


Keeping the universe connected.

Use Case Scenarios – Space Based Receiver Assessment

GPS Adjacent Band Compatibility Assessment Workshop VI


RJ Balanga 30 March 2017


www.nasa.gov

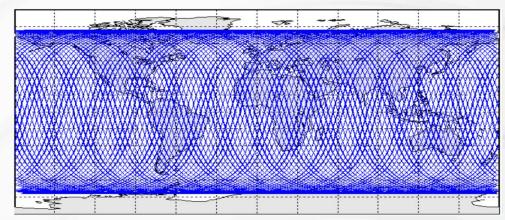
Space Based Receiver Applications

- Space vehicle navigation / Precise Orbit Determination (POD)
 - Position
 - Velocity
 - Time
 - Attitude
 - Associated scientific missions:
 - Ocean and ice altimetry
 - Synthetic Aperture Radar (SAR)
 - Interferometric SAR
 - POD and time transfer for gravity field •
- Science measurements:
 - Radio occultation (GNSS-RO)
 - **NOAA** Operational Weather Forecasting
 - Climate change science
 - Space weather phenomenona
 - Reflectometry (GNSS-R)
 - Weather forecasting
 - Tidal surges
 - Flood plain monitoring

- Goddard Space Flight Center (GSFC)
 - Navigator GPS Receiver
- Jet Propulsion Laboratory (JPL)
 - Flight TurboRogue
 - BlackJack GPS Receiver
 - IGOR
 - IGOR+
 - TriG Receiver

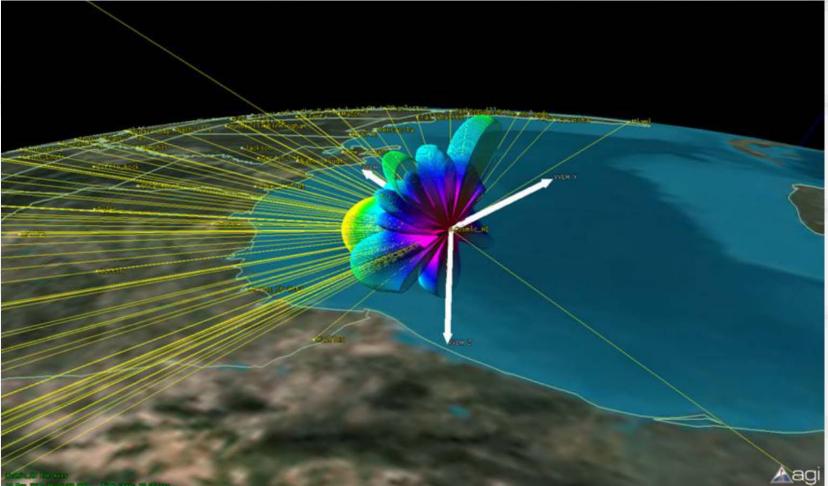
Focus on TRIG

- Applications:
 - Navigation/POD/sub-nanosecond time transfer
 - Radio Occultation
- Upcoming Missions:
 - Deep Space Atomic Clock (DSAC)
 - COSMIC-2 Equatorial (6 satellites)
 - COSMIC-2 Polar (6 satellites)
 - GRACE-Follow-On
 - Sentinel-6
 - Surface Water and Ocean Topography (SWOT)
 - NASA-ISRO Synthetic Aperture Radar (NISAR)
 - Other missions in development



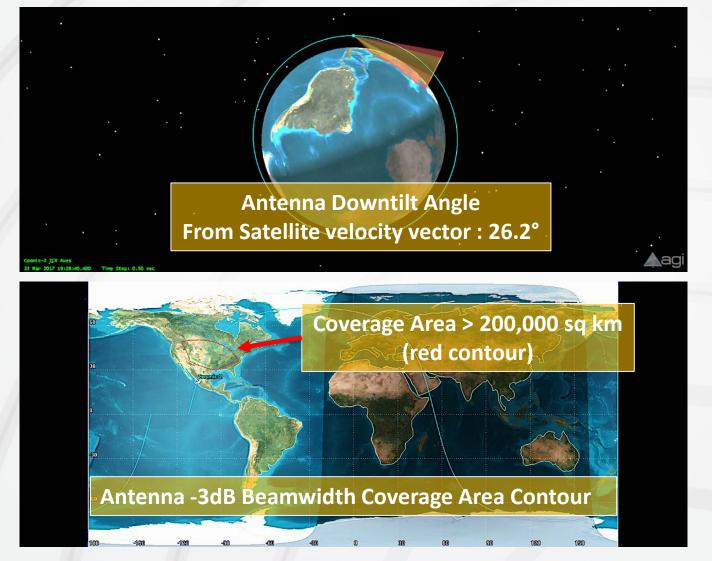
On-Orbit Assessment Parameters

- Assessment based on the <u>aggregate received interference</u> from terrestrial interferer network
- Computation Method:
 - MATLAB time simulation
 - 10-day orbit simulation period @ 1-sec time steps
- System on-orbit specifications:
 - Altitude
 - Inclination angle
- Receiver specifications:
 - Antenna type
 - Antenna pointing azimuth
 - Antenna pattern
 - Polarization
 - Interference threshold*
- Propagation Loss
- Cross-polar antenna loss

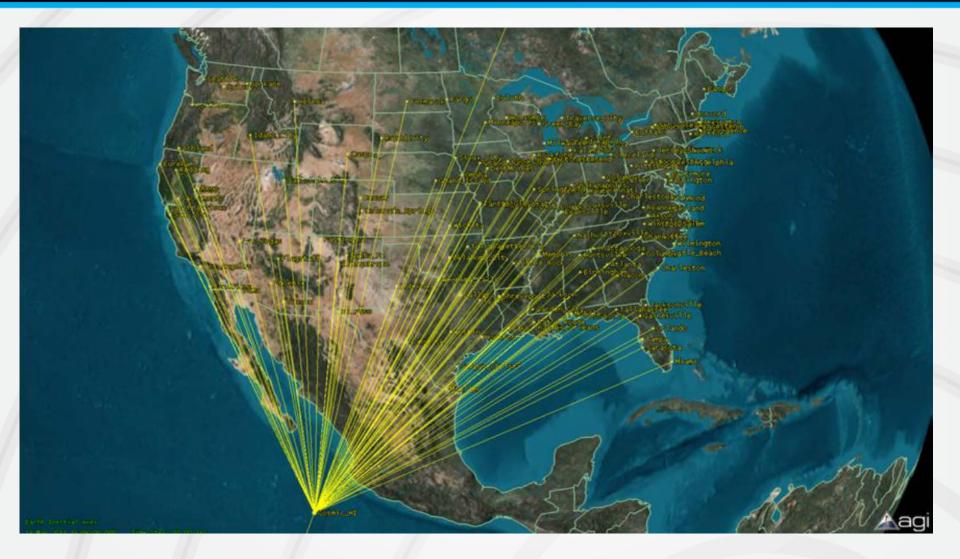

Cosmic-2 Satellite 800 km/72° inclination orbit (1 of 6 Constellation Satellites) over 10 day period

TRIG GNSS-RO Antenna Gain Pattern

12-Element Array Antenna (Main beam pointing toward Earth limb)


[NOTE: A 2nd 12-element array antenna exists on the reverse side of the satellite. The 2nd array antenna has been omitted from this pictorial for graphical simplicity.]

GNSS-RO Antenna Beam Earth Grazing Coverage Area


TRIG RO Antenna -3dB Beamwidth earth grazing coverage

On-Orbit View of US Major Cities

- Unknowns of interferer network deployment
 - User target basis
 - Broadband mobile, IoT, Public Service Utility, etc.
 - Mixture of macro-/micro-cells* in a given environment
 - Urban vs rural
 - City-by-city
 - Maximum EiRP per sector per channel
- Any combination of the unknowns may affect:
 - Antenna orientation
 - Antenna vertical down-tilt/up-tilt angles
 - Density of base-stations (urban vs rural)

- Continuation of collaboration with DOT
 - Ensure succinct assumptions for base-station macro-/micro-cell specifications
- Methodology of analysis
 - Development of generic terrestrial network deployment scenario(s)
- Documentation of assumptions
- Modeling and simulation analysis
- Provide results to DOT within a timeframe correlated with DOT's other use-case scenario assessments

POC Information

René (RJ) Balanga

Sr. Spectrum Regulatory & Policy Advisor NASA HQ rj.balanga@nasa.gov (o) 202.385.1216 (m) 202.230.8055

Bernard Gamache

Director (Acting), Spectrum Analysis Center Glenn Research Center <u>bernard.g.gamache@nasa.gov</u> (o) 216.433.6162 (m) 216.210.6777

Dr. Larry Young

Group Supervisor, GPS Systems Group Jet Propulsion Laboratory <u>lawrence.e.young@jpl.nasa.gov</u> (o) 818.354.5018